

Chapter 1

Web Development and ASP.NET

Introduction
DI Dr. Reinhold Mayer

October 2003, April 2005, August 2009, September 2010, August 2011, August 2012

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 2 von 10

Content

1. Goals to be Achieved ... 3

2. Building Your First Official ASP.NET Application .. 3

2.1. The ASP.NET Namespaces .. 3

2.2. Creating a Simple C# Web Application ... 3

3. The architecture of an ASP.NET Web Application ... 4

3.1. The System.Web.UI.Page Type ... 4

3.2. Caching of data in a Round Trip? .. 6

3.3. The *.aspx/CodeFile Connection ... 7

3.4. An Example .. 7

4. Examples .. 10

4.1. Exa141_A: „Simple Pocket Calculator“ .. 10

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 3 von 10

Web Development and ASP.NET

1. Goals to be Achieved

▪ In this chapter we begin to explore how the .NET platform facilitates the construction of browser-

based presentation layers.

▪ We will partition the HTML presentation logic and business logic into discrete locations using a

technique called CodeFile.

▪ Essential features are the Page type the classic ASP-like Request, Response, Session and Applica-

tion properties.

2. Building Your First Official ASP.NET Application

2.1. The ASP.NET Namespaces

The .NET class libraries contain numerous namespaces that represent Web-based technologies. These

namespaces can be grouped into three major categories: Core Web Atoms (e.g. HTTP types, configu-

ration types, security types), UI (WebForm controls) and Web services. The following table shows the

essentials of the Core Types of the System.Web namespace:

System.WEB Type Meaning

HttpApplication Defines the members common to all ASP.NET applications.

HttpApplicationState Enables developers to share global information across multiple re-

quests, sessions, and pipelines in an ASP.NET application.

HttpRequest Provides an object-oriented way to enable browser-to-server commu-

nication (e.g. used to gain access to the HTTP request data supplied by

a client).

HttpResponse Provides an object-oriented way to enable server-to-browser commu-

nication (e.g. used to send output to a client)

2.2. Creating a Simple C# Web Application

First, create a new C# Web Application project workspace named FirstWebApplication: Pro-

ject Types: Visual C# Projects, Templates: ASP.NET Web Site.

In this case the IIS must be installed locally on your computer!

Open Visual Web Developer. On the File menu, click New Web Site. The New Web Site dialog box

appears:

1. Under Visual Studio installed templates, click ASP.NET Webapplication (.NET Framework).

2. Click Forward.

3. Click Open and type the name FirstWebApplication.

4. Right Click on Project and add a new Item WebForm and name it Default.aspx

5. Visual Web Developer creates the new Web Site and opens a new class named Default.aspx,

which is the default Web Site.

6. Now start implementing your Web Application.

Notice that the location text box maps to a specific folder on your hard drive in case of File System.

Whereas to the URL of the machine hosting this Web application in case of Local IIS. When the pro-

ject has been created, you will notice that a design time template has been opened automatically (Fig.

1) which can be viewed in Design-, Split-, or Source-mode. The Source mode is an XML-like doc-

ument in which you can manipulate your controls manually!

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 4 von 10

Fig: 1. The Source File / Design Mode in VS.Net Fig. 2: The Solution Explorer

This template represents the visual appearance of the *.aspx file you are constructing. Given that this

will be the page requested by the outside world named Default.aspx.

Next, look at your Solution Explorer window (Figure 2). You have been given a number of new files

and external assembly references. If you open IIS, you will see that a new virtual directory (First-

WebApplication) has been automatically created on your behalf.

If you examine the HTML behind your *.aspx file, you will see that you have been given the minimal

set of tags that establish a basic HTML form. The first point of interest is the runat attribute appear-

ing in the form-tag. It is used to mark an item as a candidate for processing by the ASP.NET

runtime to generate HTML to return to the browser, as shown here:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs"

Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Untitled Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 </div>

 </form>

</body>

The web.config file (last file in the Solution Explorer) contains XML data used to control various as-

pects of your Web application’s configuration.

3. The architecture of an ASP.NET Web Application

3.1. The System.Web.UI.Page Type

The Page class defines the properties, methods, and events common to all pages processed on the

server by the ASP.NET runtime. Some of these are:

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 5 von 10

SYSTEM.WEB.UI.Page
properties

Meaning

Application Gets the HttpApplicationState object provided by the runtime. Works

like a Collection!
 Application["Test"] = 12.34f;

 Application.Add("Test", 13.45f);

Enables sharing of global information across multiple sessions and

requests within an ASP.NET application.

Cache Indicates the Cache object in which to store data for the pages’s appli-

cation.

IsPostBack Gets a value indicating whether the page is being loaded in response to

a client postback, or if it is being loaded and accessed for the first time.

Request Gets the HttpRequest object that provides access data from incoming

HTTP requests. I.e. to read cookies
 String name = Request.Cookies.Get(i).Name;

Response Gets the HttpResponse object that allows you to send HTTP response

data back to a client browser. I.e. to set cookies
 HttpCookie cook01 = new HttpCookie("Cook01");

 cook01.Value = "DrChess";

 cook01.Expires = DateTime.Now.AddSeconds(10);

 Response.Cookies.Add(cook01);

Server Gets the HttpServerUtility object supplied by the HTTP runtime.
 Server.HtmlEncode(cook01.Name);

Session Gets the System.Web.SessionState.HttpSessionState object, which

provides information about the current request’s session.
 Session["Calls"] = numOfCallsWithSession;

 Session.Add("Calls", numOfCallsWithSession);

Session object are not discarded when the user moves from page to

page in the application; instead, these variables persist as long as the

user is accessing pages in your application.

SYSTEM.WEB.UI.Page
Events

Meaning

OnInit Is fired when the page is initialised and is the first step in the page’s

life cycle.

OnLoad Is fired when initialised. Here you can configure any WebForm con-

trols with an initial look and feel.

OnUnload Occurs when the control is unloaded from memory. Controls should

perform any final cleanup before termination.
 sqlCon.Close();

Tab 1: Page members

The event handler for the Load event is a perfect place to connect to a data source (to populate a

given WebForm DataGrid) and perform any necessary pre-work. The Unload handler is a perfect

place to clean up any allocated resources.

3.1.1. Comments on Cookies

Creating/Writing Cookies: Cookies will be created with Response. There are 2 ways to create a

cookie. In this example we create a cookie named UN with value UserName and expire time 10 sec.:

 HttpCookie unCookie = new HttpCookie("UN");
 unCookie.Value = "UserName";
 unCookie.Expires = DateTime.Now.AddSeconds(10);
 Response.Cookies.Add(unCookie);

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 6 von 10

In this example we create a cookie named PW with value Password and expire time 15 sec.:

 Response.Cookies["PW"].Value = "Password";
 Response.Cookies["PW"].Expires = DateTime.Now.AddSeconds(15);

Reading/Getting Cookies: Cookies will be read by Request. In this example we read the name of a

cookie in the Cookies Request-list:

 HttpCookie cookie = Request.Cookies[i];
 Response.Write("
Cookie name___: " + cookie.Name);

Remove/ChangeValie from Cookies: You also can remove Cookies from the Cookie-list or change the

value :

 Request.Cookies.Remove("UN");
 Request.Cookies["UN"].Value = "Dr.Chess";

Use of Cookies:

Cookies may be used for authentication, identification of a user session, user's preferences, shopping

cart contents, or anything else that can be accomplished through storing text data. Cookies can also be

used for travelling of data from one page to another.

3.2. Caching of data in a Round Trip?

A round trip is a process that initiates an action (i.e. button click) on the client side. This ac-

tion calls the event in the .aspx-side that is located on the server side. The event processes the

request and returns the result as an html-page. Caching data in a round trip we can decide

between caching on the server side or on the client side.

• Caching data on the server side: Here we can use both the Session state and Application

state.

• Caching data on the client side: Here we can use both the View stat as well as the hid-

den field. This data is stored only at the same page. When we redirect to a different page

and redirect back the hidden value will be lost! It is recommended to apply a

Caching data on the server side may use additional resources on the server. This may lead to a de-
crease in the performance of the server and may influence the scalability of the system.

Example:

In this example we want to read the value 4711 from a text box in the Default.aspx page. This

value will be cached in a Session. In the 2nd aspx-file (i.e. Test.aspx) we will read this data

from the Session and output in a text box in the 2nd aspx-file.

Implementation of the „Caching“- Default.aspx:

 Session["Wert"] = Convert.ToInt32(tbxSession.Text);

Implementation of the Caching – Test.aspx::

 int wert = Convert.ToInt32(Session["Wert"]);

Abb. 3: Default.aspx: 4711 wird in Session gecacht Abb. 4: Test.aspx: Ausgabe der ge-
cachten Information

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 7 von 10

3.3. The *.aspx/CodeFile Connection

The first major point of interest is the mysterious CodeFile (former Codebehind) attribute in the

initial script block. The *.aspx page, which is requested by an external client, is represented by a

unique C# class, identified by the CodeFile attribute. To access the Codebehind-file, simply right-

click an open *.aspx file and select “View Code”.

using System;

using System.Configuration;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 { }

}

The default skeleton code is not too complicated. The constructor Page_Load of the Page-derived

class will be executed whenever a post back from the server occurs.

ASP.NET provides a way for separating the logic that dynamically generates the returned HTML (the

*.aspx) file from the implantation of your page’s logic (e.g., the *.aspx.cs file). Now when you are

writing code in the *.aspx file, you can reference the custom methods and properties defined in the

*.aspx.cs file.

3.4. An Example

This example is to demonstrate both the binding of the CodeFile as well as the role of the Page_Load

method in the CodeFile. The application consists of 2 pages: Default and Pag02. Both pages con-

sist of 2 Buttons each. The page Default implements 3 Integer-Variables that have to be incremented

by one on each post back and will be initialised with the value = 1 when starting the application in the

page Default:

✓ staticNumOfCalls: A static int-variable.

✓ dynamicNumOfCalls: An int-variable..

✓ numOfSessionCalls: An int-variable that will be stored in a Session-object.

The following operations should give the following results:

✓ Give the actual time (Response-Object) in the page Default (Fig. 1).

✓ Click 4 times the button PostBack. The result in page Default is given in Fig. 2.

✓ Click the button ToPage02 in page Default. Navigate to page Page02. View result in Fig. 3.

✓ Click the button PostBack in page Page02. The result is given in Fig. 4.

✓ Click the button ToDefault02 in page Page02. This redirects to page Default. The result is

given in Fig. 5.

✓ Click button PostBack twice. The result is given in Fig. 6.

When starting the web application, the following HTML file will be displayed (Fig. 5). This is the

page, when no “postback” occurred rather when you open the start page.

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 8 von 10

Fig. 1: The page “Default” at start time Fig. 2: The page “Default” after 4 post backs

Fig. 3: Redirect to Page02 Fig. 4 PostBacks in page Page02

Fig. 5: Redirect to page “Default” Fig. 6: Another 2 post backs in page “Default”

This is almost the complete code for the page Default.aspx:

Default.aspx.cs: Execution of the code lines of !IsPostBack in the Page_Load function of the

Default.aspx.cs (code behind file). This gives the Actual Time in the HTML-File.

public partial class _Default : System.Web.UI.Page

{

 // Fields to show stateless forms

 protected static int staticNumOfCalls = 0;

 protected int dynamicNumOfCalls;

 protected int numOfSessionCalls;

 protected void Page_Load(object sender, EventArgs e)

 {

 // The "TRUE" part will be called in case of istantiation =

 // surfing this page the first time!!!

 if (!IsPostBack)

 {

 Response.Write("Actual Time (!IsPostBack): " +

 DateTime.Now.ToLongTimeString());

 staticNumOfCalls++;

 dynamicNumOfCalls++;

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 9 von 10

 numOfSessionCalls++;

 Session["Calls"] = numOfSessionCalls;

 }

 // The "FALSE" part will be called in case of any triggering by

 // asp-controls!!!

 else

 {

 // Print the "Static Number Of Calls"

 Response.Write("Static Number Of Calls (IsPostBack): " +

 staticNumOfCalls + "
");

 staticNumOfCalls++;

 // Print the "Number Of Calls With Session"

 …

 // Print the "Dynamic Number Of Calls".

 Response.Write("Dynamic Nums Of Calls (IsPostBack): " +

dynamicNumOfCalls);

 dynamicNumOfCalls++;

 }

 }

 /// <summary>

 /// This function is called by the button to navigate to next page.

 ///

 protected void onToPage02Click(object sender, EventArgs e)
 {
 Response.Redirect("SecondPage.aspx");

 }

 /// <summary>

 /// This function is called by the aspx-file via Response.Write

 /// </summary>

 protected String getDateTime()

 {

 return "Call the function getDateTime() from CodeFile: " +

 DateTime.Now.ToUniversalTime();

 }

}

Default.aspx: Initiation of the HTML-file as given in the Default.aspx as given below. This initiates

the Response.Writes as well as the web-controls.

<body>

 <form id="form1" runat="server">

 <div>

 <%Response.Write("ASP-Controls"); %>

 <asp:Button ID="btnPostBack" runat="server" Text="PostBack"

 OnClick="onPostBackClick" Width="150px" />

 <asp:Button ID="btnToPage02" runat="server" Text="ToPage02"

 OnClick="onToPage02Click" Width="150px" />

 </div>

 </form>

</body>

ASP-Controls

When ever you trigger a post back the method Page_Load is the first method that will be executed

followed by the ASP-control event, in this case the onPostBackClick(…). Most of all ASP

controls are post back able! ASP-Controls do access functions in a code-behind file, an aspx.cs! As in

this case the following html-file will be produced. This is done by execution of the code lines follow-

ing the IsPostBack in the Page_Load function of the Default.aspx.cs and execution of the event

onPostBackClick(…). Confer figures above (Fig. 1 – Fig. 6)

Web Development and ASP.NET

01 Web Dev Introduction (Teacher_Loibner).docx DI Dr. Reinhold Mayer Seite 10 von 10

4. Examples

4.1. Exa141_A: „Simple Pocket Calculator“

Create an ASP.Net application that simulates a primitive pocket calculator. It consists of only the fol-

lowing web controls: 4 buttens (Operations +, -, *, /), 3 text fields (operand 1, operand 2, result), 1

label for the operator sign. The headline is a simple Write statement. You have to implement 4 func-

tions in Java Script that performs the required operations.

Fig. 7: The pocket calculator

Erstelle ein Loginfenster, Gib in einem HiddenFields bzw. Session 5 Passwörter vor, die beim Login

✓ übertrage die Login-Werte vom Hidden-Field auf die Admin-Seite und zeige diese an. Ändere

diese Werte und navigiere zur Login-Seite

